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QUESTION OF THE CONVERGENCE OF ITERATION METHODS 

OF SOLVING THE INVERSE HEAT-CONDUCTION PROBLEM 

V. V. Mikhailov UDC 536.24.02 

The convergence of iteration methods of solving the inverse heat-conduction problem 
depending on the type of desired boundary function is numerically investigated. 

Iteration methods of solving inverse boundary-value heat-conduction problems (IHCP) in 
an extremal formulation are utilized extensively at this time. These methods are based on 
the search for boundary functions by starting from the requirement of minimization of a 
certain functional characterizing the measure of the deviation of the calculated temperatures 
from the temperature measured during the experiment. 

Both the density of the heat flux (boundary condition (BC) of the second kind) and the 
temperature of the surface being heated (BC of the first kind) can be considered as the func- 
tions desired. 

Fundamental attention is paid in the development of iteration methods to the construction 
of iterative schemes based on a search for the time dependence of the thermal flux density 
[1-3]. At the same time, iteration schemes based on the search for the time dependence of 
the surface temperature have a definite advantage since it is necessary to find a continuous 
function with a known value at the initial instant t = 0 (the temperature distribution over 
the thickness is usually known at t = 0). The thermal flux density can hence be determined 
by conversion of the boundary condition. 

To estimate the convergence of iterative methods of solving the IHCP as a function of 
the kind of desired boundary function, we consider the following inverse problem in the 

domain { O ~ x ~ 8 , 0 ~ t ~ t p }  : 

OT 8 
C (T) -- -- 

Ot Ox 
-[,~(T) 8-~x ] ,  O < x < b  , O ~ t ~ t ; ,  

T(x, 0)= q~(x), O ~ x ~ b ,  

( 2 - - K ) T ( O ,  t ) + ( 1 -  K)~(T) OT(O, t) 
Ox 

-- 2~(T) aT(b, t) =q2(t), 
Ox 

= u (t), 

v (b, t) = f (t), 

(i) 

(2) 

(3) 

(4) 

(5) 

where C(T), %(T), ~(x), q2(t), f(t) are known functions, K is a parameter governing the type 
of BC on the domain boundary x = 0 (K = I is a BC of the first kind and K = 2 of the second 
kind). 
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Determine the unknown function u(t) on the boundary x = 0 for a known temperature f(t) 
and thermal flux density q2(t) on the boundary x = b. The function u(t) is determined from 
the condition for the minimum of the functional 

lp 

1 
J[u( t )]  --~- ~ [T(b,  t ) - - f ( t )12d t .  (6) 

0 

Iteration approximations to the desired function are constructed by the scheme of the 
method of conjugate gradients 

uh+1 = uh 2-  aph, k =- O, 1, 2 . . . .  , Pn = - -  J~n -t- [AkPk-x, 

~h = (J"h - -  J ;h - , '  J'uh)/(Js - , ,  Juh-,),  [3o = 0, 

(7) 

where J' is the gradient of the functional being minimized, uo(t) is a known initial approxi- 
U 

mation, and ~ is the magnitude of the step in going over to the next (k + l)-th approximation. 

The gradient of the functional J' is calculated from formulas based on the solution of 
U 

the boundary-value problem adjoint to problem (1)-(4). Following the methodology elucidated 
in [3], it can be shown that the expressions for the gradient of the functional (6) have the 
following form depending on the type of BC on the boundary x = 0: 

a 
J ~ =  [A(0, t ) , ( 0 ,  l)] f o r K =  1 (8) 

and 

(9) 
j~___ A(0, t ) , ( 0 ,  t) for K = 2 ,  

~(o,  t) 

while the value of the adjoint variable 4(0, t) is determined from the solution of the follow- 
ing boundary-value problem 

ai~ a 2 o 
a~- - ax ~ ( A * ) -  (BqO+D% O < x < b ,  O<~l< t , ,  (10) 

where 

r t , ) =  0, O~.x<~b, (11) 

~(o, t) ( z - - g ) +  (K --  1) ~176 t) o-----x-- § [A(0, t ) , (0,  t)]--B(0, t ) , (0,  t) (K-- 1)= 0, (12) 

A(b ,  t.)r t) O~,(b,  t) 0 (13) 
~, (b, t) 0 ~  § ~ [A (b, t ) ,  (b, t)] - -  B (b, t) r (b, t) = T (b, l) - -  [ (t), 

2 a ~ (  x, t) 1 A(x, t) =~(x,  t~C(x, O; B(x, t) = /C(x, O; 
Ox I 

�9 )/ D(x, t) ( O~(X,o~ t) OC(X,ot t )  C(x,O. 

The d e p e n d e n c e s  A(x,  t ) ,  B(x,  t ) ,  D(x,  t )  as  w e l l  as  X(0, t ) ,  3Z(0,  t ) / 3 x ,  X(b, t )  and 

3X(b, t ) / ~ x  a r e  d e t e r m i n e d  f rom t h e  s o l u t i o n  of  p r o b l e m  ( 1 ) - ( 4 ) .  

As has been noted in [l], there is no uniform convergence in the calculation of the 
gradient by means of (9), and the accuracy of the solution of IHCP depends to a considerable 
extent on the selection of the initial approximation uo(t). In this connection, to assure 
uniform convergence in the case K = 2 the iteration sequence can be constructed by using 
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Fig. i. Restoration of different time de- 
pendences of the thermal flux density on 
one of the boundaries by means of the 
temperature on the other heat-insulated 
boundary: i) true values; 2) using (8); 
3) using (9); 4) using (14). 

an expression for the gradient with respect to the derivative of the heat flux density with 

respect to time u = du/dt [2, 3]: 

tp 
$ i= . f  A(0, ~)~(0, ~) am. (14) 

;~(0, "it) 

The magnitude of the step ~ in going from uk(t) to Uk+~(t) is determined from the condition 

rain ] (u~--apk) 

A calculation algorithm has been developed on the basis of the above, and a number of 
inverse heat-conduction problems have been solved, including the restoration of different 
time dependences of the thermal flux density on the boundary of a flat plate x = 0 for a 
given temperature on the other heat-insulated boundary x = b. Here the heat flux density 
was estimated in the case K = 1 (search for the surface temperature) by an approximate for- 
mula of second order accuracy. 

Results of the computations are displayed in Fig. i. The dependences presented are ob- 
tained for the very same number of iterations, which equals the number of parameters for a 
discrete representation of the desired dependences for all the computed cases. 

The results obtained showed that the iteration scheme based on searching for the surface 
temperature (computation of the gradient by means of (8)) is not only uniformly convergent 
but also assures the greatest accuracy in restoring the heat flux density, other conditions 
being equal, as compared to schemes using (9) or (i0). 

NOTATION 

t, time; tp, length of the time interval; x, space coordinate; b, thickness; T(x, t), 

temperature; C(T), bulk specific heat of the material; X(T), heat conduction coefficient 

of the material; ~(x), initial temperature distribution; q, thermal flux density; f(t), 

measured temperature; ~(x, t), adjoint variable; a, B, P, parameters of the method of conju- 

gate gradients; and k, number of the iteration. 
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AN ITERATION ALGORITHM FOR THE SOLUTION OF THE 

INVERSE BOUNDARY-VALUE PROBLEM OF HEAT CONDUCTION 

S. V. Pavlyuk UDC 536.24 

An iterative procedure is constructed for solving the inverse boundary-value problem 
of heat conductivity in an extremal formulation on the basis of solving a Cauchy 
problem. 

Following [i, 2], the solution of the nonstationary heat-conduction problem 

( T ) - ~  @ ~' (T) \ ~ }  

Tl~=o = O, 

OT 
b 

[ = O, TIx=I = Tw(~:), 
OX Ix=o 

(1) 

(2) 

(3) 

where ~=a0//R 2, X=x/R, R are the dimensionless time, coordinate, and characteristic linear 

dimension, respectively, and cv=Cv/Cv.o, h=h/~0 are the relative values of the bulk specific 

heat and the heat-conduction coefficient, is written in the form 

N-- 1 

T(X, ~)=l im [~O,,(X, Y~)Y,,+I('O+ W(X, u 
N~ ~ n--0 (4) 

where the vector function Y={YI, Y~, ' ' '  , YN} is defined as the solution of the Cauchy 
problem 

dY,~ . =  e ,  Yn+l,  t/. = 1, 2 . . . . .  N •  1, ] 
d'~ I 

N-:- 1 dYN eN . ] 
d----~ = aN(X, Yl)[Tw('f') - -~7(  1, Y)--  ' ~  an( l ,  Yl) Yn+l. ('[)] , }, 

n=0 ] 

Y~l~=0 = 0 

(5) 
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